Van Hove Hamiltonians - exactly solvable models of the infrared and ultraviolet problem
ثبت نشده
چکیده
منابع مشابه
Multi-Particle Quasi Exactly Solvable Difference Equations
Several explicit examples of multi-particle quasi exactly solvable ‘discrete’ quantum mechanical Hamiltonians are derived by deforming the well-known exactly solvable multi-particle Hamiltonians, the Ruijsenaars-Schneider-van Diejen systems. These are difference analogues of the quasi exactly solvable multi-particle systems, the quantum Inozemtsev systems obtained by deforming the well-known ex...
متن کاملFe b 19 96 Quasi - Exactly Solvable Models and W - Algebras
The relationship between the quasi-exactly solvable problems and W-algebras is revealed. This relationship enabled one to formulate a new general method for building multi-dimensional and multi-channel exactly and quasi-exactly solvable models with hermitian hamiltonians. The method is based on the use of multi-parameter spectral differential equations constructable from generators of finite-di...
متن کامل/ 96 02 07 6 v 1 1 4 Fe b 19 96 Quasi - Exactly Solvable Models and W - Algebras
The relationship between the quasi-exactly solvable problems and W-algebras is revealed. This relationship enabled one to formulate a new general method for building multi-dimensional and multi-channel exactly and quasi-exactly solvable models with hermitian hamiltonians. The method is based on the use of multi-parameter spectral differential equations constructable from generators of finite-di...
متن کاملExactly Solvable Models in Arbitrary Dimensions
We construct a new class of quasi-exactly solvable many-body Hamiltonians in arbitrary dimensions, whose ground states can have any correlations we choose. Some of the known correlations in one dimension and some recent novel correlations in two and higher dimensions are reproduced as special cases. As specific interesting examples, we also write down some new models in two and higher dimension...
متن کاملSupersymmetric Dynamical Invariants
We address the problem of identifying the (nonstationary) quantum systems that admit supersymmetric dynamical invariants. In particular, we give a general expression for the bosonic and fermionic partner Hamiltonians. Due to the supersymmetric nature of the dynamical invariant the solutions of the time-dependent Schrödinger equation for the partner Hamiltonians can be easily mapped to one anoth...
متن کامل